

INSIGNEG Institute for *in silico* Medicine

CT2S Service

Non-invasive bone strength estimation

The University Of Sheffield.

Computed Tomography(CT) Scan

Patient undergoes a femoral CT scan Please refer to CT protocol for CT settings

CT Calibration

European spine phantom (ESP) is scanned on the same CT scanner with the same CT settings

Job Submission

INSIGNEO	Home	Jobs	Links +					Online Servic
We	lcome to	the Job	s Dashboard					
Jo	ob ID Jo	b Name		Patient Ref	Submitted	Status	Edit	Log
8	jo	b_u1_p8000	_J8	8000	10-06-2016 at 11:06	new	Edit	Log
6	jo	b_u4_p9012	0_16	90120	07-06-2016 at 11:48	running	Edit	Log
5	jo	b_u1_p6001	_j5	6001	03-06-2016 at 13:55	running	Edit	Log
4	jo	b_u1_p8000	4ن	8000	03-06-2016 at 13:45	new	Edit	Log
3	jo	b_u1_p5856	934_j3	5856934	03-06-2016 at 13:40	complete	Edit	Log
2	jo	b_u1_p501_	12	501	03-06-2016 at 13:25	new	Edit	Log

CT scan DICOMS of the patient and the ESP are submitted to the CT2S service through our website

💶 Submit New Job

Image Visualization

DICOM images are imported into image visualization software and checked against protocol requirements

Image Segmentation

Semi-automatic segmentation is performed to extract the anatomy of the femur. Extracted surface is saved in the STL format

Volume Meshing

STL geometry is imported into ANSYS ICEM to generate a volumetric finite element (FE) mesh

Calibration Equation

Density to grayscale calibration equation is derived from the ESP Ct scan

Material Mapping

Meshed volume and the associated CT scan are then imported into BoneMat. Elastic modulus (E) is then mapped on to the mesh based on the greyscale value (HU).

$$\rho = a^{*}HU + b$$
 E= 6.950(ρ)^{1.49}

(a & b determined from ESP Calibration phantom)

Anatomical Landmarking

Anatomical landmarks are virtually palpated and a local reference system is generated using BuilderM2O

Finite Element (FE) Simulation

Multiple Stance and Side fall loading scenarios are simulated using ANSYS APDL macros

Femur Strength

Femur strength is estimated based on the tensile and compressive principal strains

Patient Report

Patient ID

Femur strength under stance

Femur strength under side-fall

Risk of Fracture

Patient report is generated and sent to the requesting client

Thank You!

The University Of Sheffield.

@insigneo

www.insigneo.org